STATE OF MAINE DEPARTMENT OF TRANSPORTATION

TRANSPORTATION RESEARCH DIVISION BUREAU OF PLANNING, RESEARCH & COMMUNITY SERVICES

DATE MAY 2000

EXPERIMENTAL CONSTRUCTION PROJECT 00-18

LONGITUDINAL JOINT TREATMENT

CONSTRUCTION REPORT

INTRODUCTION

Maine highways have been showing signs of longitudinal joint failure for a number of years. In an effort to reduce the amount of joint failures the Maine Department of Transportation (MDOT) is currently evaluating two projects. One project is monitoring the results of using multiple rolling techniques and a proprietary precompaction device. The other project is developing a longitudinal joint density specification for Superpave mixes.

This experimental project will evaluate the application of a joint sealer and joint adhesive in an effort to reduce the amount of longitudinal joint separation.

PROJECT DESCRIPTION

Project number IM-95-6596(00)E on I-95 in the town of Waterville was selected to apply the joint sealer and adhesive. This is a pavement rehabilitation project which consists of milling 40 mm of existing pavement then paving with an intermediate course of 40 mm of 12.5 mm Superpave mix and 35 mm of 9.5 mm Superpave surface mix. The project begins at Webb Road bridge and extends northerly 6.59 km to Maine Central Railroad bridge (see attached map). The experimental area begins at station 196+780 and ends at station 200+370.

PRODUCT DESCRIPTION

Three products were used to seal the longitudinal joints. One is a rubberized joint sealer labeled CMC #102 manufactured by Crackfiller Manufacturing Corporation. Another is a joint adhesive labeled KOCH PRODUCT #9005-HV manufactured and supplied by KOCH Materials

Company. The third product, which is a standard joint sealer for most projects and will be used as a control section, is an emulsified asphalt grade HFMS-1. A copy of SPECIAL PROVISION SECTION 424 JOINT SEALER describing construction requirements and copies of product data sheets for CMC #102 and KOCH #9005-HV are attached.

CONSTRUCTION PROCEDURES

The centerline longitudinal joints were constructed with 75 mm offsets between the intermediate and surface course. The same product was used to seal each course in each section.

Section I contains the joint sealant CMC #102. This section begins at the Webb Road bridge at station 196+780 and ends at station 197+780. The intermediate course travel lane was paved first then the centerline longitudinal joint was sealed with CMC #102 ahead of the paving train paving the passing lane. A crew of three people applied the sealant using a handheld wand that had a shoe attachment on the end in the shape of an inverted L. The sealant was heated and pumped threw the wand to the shoe which was dragged across the joint spreading sealant along the face. The wearing course was paved and sealed in the same sequence as the intermediate course. Both joints for this section were sealed at a rate of 0.13 kg/m at 190° C.

Section II was sealed with emulsified asphalt grade HFMS-1. This section begins and ends at stations 197+780 and 198+785 respectively. This section was paved in the same sequence as Section I. The emulsified asphalt was applied using a handheld sprayer covering the top, face and bottom of the longitudinal joint. The application rate and temperature are not available.

Section III was sealed with KOCH PRODUCT #9005-HV joint adhesive. This section begins at Kennedy Memorial Bridge at station 199+370 and ends at station 200+370. This section was also paved in the same sequence as Section I. The same heater and wand used to apply sealant on Section I was used to apply the joint adhesive for this section. The rate of application was 0.18 kg/m at a temperature of 190° C.

SUMMARY

Sealing the joint on all sections went smoothly and was applied efficiently with no problems.

The CMC #102 joint sealant had a rubbery appearance and slowly flowed down covering most of the joint face but leaving a few gaps in the coverage. When the operator slowed the application rate to cover more of the joint face an undesirable amount of the product would settle on the bottom of the joint.

The HFMS-1 in Section II was applied with a spray bar covering a large portion of the top, face and bottom of the joint in a uniform layer leaving few exposed surfaces.

Section III using KOCH #9005-HV joint adhesive had a granular appearance and was more fluid than the CMC #102 allowing the product to cover slightly more of the joint face than the sealant in Section I. Once again the application rate had to be steady to avoid adhesive settling at the bottom of the joint.

The experimental sections will be evaluated and interim reports will be published annually for a period of five years. A final report will be published at the end of the evaluation period.

Prepared by: Reviewed by:

Brian Marquis Dale Peabody

Transportation Planning Analyst Transportation Research Div. Engineer

March 16,1999 Augusta - Waterville IM-95-6596(00)E

SPECIAL PROVISION <u>SECTION 424</u> JOINT SEALER

<u>Description</u>. This work shall consist of furnishing all labor, equipment and materials necessary to clean and seal longitudinal and transverse joints that result in the construction of bituminous concrete pavement courses. This material is to be thoroughly applied to the joints during the construction of bituminous pavement courses, to seal the construction joint from deterioration due to the elements, and to adhere the joint materials together.

MATERIALS

<u>General</u>. Pavement joint adhesive shall be a hot applied modified asphalt designed to seal and adhere the cold longitudinal construction joints to adjacent courses. The specified material shall be a Pavement Joint Adhesive manufactured by Craftco Inc., or a verifiable equivalent.

The emulsion shall conform to the applicable provisions of Section 409 - bituminous Tack Coat and to the requirements of Section 700 of the Standard Specifications

Asphalt rubber crack sealer shall be an asphalt and rubber compound designed for sealing and improving the strength and performance of the base asphalt cement and shall conform to ASTM D-3405.

CONSTRUCTION REQUIREMENTS

<u>Weather.</u> Asphalt rubber crack sealer, pavement joint adhesive, and emulsion shall not be applied on a wet surface, after sunset or before sunrise, or when the atmospheric temperature is below 10°C in a shaded area at the job site, or when weather conditions are otherwise unfavorable to proper construction procedures. An atmospheric temperature of 2°C and rising will be permitted on intermediate and base courses, with the time and weather constraints remaining.

<u>Preparation and Placement.</u> This work shall include three 1000 meter test sections, beginning at the construction joint at the **Webb Road** bridge. The first section shall be constructed with a pavement joint adhesive that conforms to ASTM D - 3405. The second test section shall be constructed with an HFMS-1 emulsion (tack) meeting 409.15 requirements. The third section and remaining project length will be constructed using a rubberized sealer that conforms to ASTM D - 3405.

Asphalt rubber sealer and pavement joint adhesive shall be heated and applied at a temperature between 170°C - 200°C or as specified by the manufacturer and approved by the Construction Manager. Sealer shall be delivered to the crack through a pressure hose line and applicator shoe. The shoe width and the sealer overbanding area shall vary from 35mm - 40mm depending on the joint height variability. These materials will not be applied at no more than 12hrs. prior to the placement of any pavement course. Emulsions shall be heated and applied in accordance with the applicable provisions of Section 409 - Bituminous Tack Coat.

Preparations of Joints. All joints shall be swept or blown free of loose material, dirt, vegetation, and other debris. Material removed from the joint shall be removed from the pavement surface by means of a power sweeper or appropriate hand tools as required. Joints shall additionally cleaned by appropriate hand tools if contaminants remain on the face. All debris, vegetation, and water shall be removed to enhance adhesion of the crack sealing material. THIS WORK SHALL NOT BE DONE IN INCLEMENT WEATHER.

Equipment. Equipment used in the performance of the work shall be subject to the Construction Manager's approval and shall be maintained in a satisfactory working condition at all times.

- (a) Sweeper: The sweeper shall be a manually operated, gas powered air-broom, or self-propelled sweeper designed especially for use in cleaning pavements shall be used to remove all debris, dirt, and dust from the joints.
- (b) Hand Tools: Hand tools shall consist of brooms, shovels and any other tools which may be satisfactorily used to accomplish this work.
- (c) Melting Kettle: The unit used to melt the joint sealing compound shall be a double boiler, indirect fired type. The space between inner and outer shells shall be filled with a suitable heat transfer oil or substitute having a flash point of not less than 320°C. The kettle shall be equipped with a satisfactory means of agitating and mixing the joint sealer at all times. This may be accomplished by continuous stirring with mechanically operated paddles and /or a continuous circulating gear pump attached to the heating unit. The kettle must be equipped with thermostatic control calibrated between 94°C and 290°C.

<u>Workmanship.</u> All workmanship shall be of the highest quality. Excess sealer shall be removed from the pavement by approved methods and discarded. Any workmanship determined to be below normal acceptable standards will not be accepted, and will be corrected and/or replaced as directed by the Construction Manager.

<u>Method of Measurement</u>. Asphalt rubber sealer and pavement joint adhesive will be measured by the linear meter applied.

Basis of Payment. The accepted quantity of asphalt rubber sealer and pavement joint adhesive will be paid for at the contract unit price per linear meter complete in place, which price shall be full compensation for furnishing and placing sealer or adhesive, including all cleaning of joints, and furnishing and placing all materials necessary to perform the work.

There will be no separate payment for furnishing and applying HFMS-1 emulsion; this work will be considered incidental to the payment items in the contract.

Payment will be made under:

Pay Item		Pay Unit	
424.36	Asphalt Rubber Joint Adhesive, Applied	linear meter	
424.321	Asphalt Rubber Crack Sealer, Applied	linear meter	

CMC #102 ASTM D-3405-78

REQUIREMENTS

Single component hot applied crack sealant. Exceeds the requirements of ASTM D-3405. Typical uses are for roads and highways.

GENERAL COMPOSITION

Ingredients include a mixture of virgin synthetic rubber or reclaimed rubber or a combination of the two with asphalt and other modifiers as required to meet the specification. Reclaimed materials are utilized as needed except when prohibited by the specifying agency or if use would adversely affect product quality or compliance to specification. Compatibility with surface treatments should be confirmed by the user through field testing prior to application.

USE

CMC 102 is a pre-reacted sealant and can be applied immediately after application temperature is reached. Specification requires sealant to be heated in a Melter utilizing oil as a heat transfer medium. The Melter shall be capable of constant agitation and equipped with a calibrated thermometer. Application can be by hand-held or wheeled pour pots or use of a pressure applicator.

APPLICATION

Heating and application in accordance with manufacturer's detailed instructions.

PHYSICAL PROPERTIES & SPECIFICATION COMPLIANCE

	TEST		
TEST	METHOD	SPECIFICATION	TYPICAL RESULTS
Cone pen @ 77°F(25°C)	ASTM D-3407	90 max.	75-85
Resilience	ASTM D-3407	60% min.	65%
Bond @ 0°F(-18°C), 100% ext.	ASTM D-3407	Pass 3 cycles	Pass 3 cycles
Bond @ -20°F(-29°C), 50% ext.	ASTM D-3407	Pass 3 cycles	Pass 3 cycles
Flow @ 140°F(60°C)	ASTM D-3407	3 mm max.	1-2 mm
Asphalt compatibility	ASTM D-3407	Complete	Pass
Safe heating temperature		400°F(206°C)	410°F(212°C)
Recommended application temp.			380°F(195°C)
Maximum application temperature			390°F(200°C)**
•			

^{* *}Temperature of sealant measured at pavement surface. Use Maximum application temperature in cool weather.

PACKAGING

Available in a 30 lb (13.6 kg) box, 75 boxes per pallet. Pallets weigh approximately 2,250 lbs (1.020 kgs). Alternate packaging is available

WARRANTY

CMC warrants that all sealant meets applicable specifications at time of shipment. Remedies against CMC are limited, at CMC's option, to product replacement, or full or partial refund, and does not include installation or any other cost. Claims must be made within three months of the date of purchase.

Distributed in your area by:

JAMBRO, INC.

261 Southwest Cutoff (Rte. 20)
WORCESTER, MASSACHUSETTS 01604
PH 800-249-2722 (508) 767-1000
Fax (508) 767-1002

Crackfiller Manufacturing Corporation

PO BOX 6738 CHEYENNE, WY 82003 307/778-8610

KOCH MATERIALS COMPANY

COATING & SEALANTS DIVISION

July 23, 1999
Jambro, Inc.
265 Southwest Cutoff (Rt. 20)
Worcester, MA 01604

PRODUCT: KOCH PRODUCT #9005-HV

REFERENCE: MAINE D.O.T.

SPECIFICATION CONFORMANCE:

Tests:	Crasco Requirements:	Koch Typical Results:				
Brookfield Viscosity, 409	°F 4,000 - 10,000 cps	9,500 cps				
Softening Point	170° F Minimum	195° F				
Cone Penetration @ 77°	F (25° C) 60-100	75				
Flow @ 140° F (60° C)	5.0 Maximum	Pass				
Resilience, 77° F	30% Minimum	70%				
Ductility, 77° F	30 cm Minimum	50 cm				
Ductility, 39.2° F	30 cm Minimum	40 cm				
Tensile Adhesion, 77° F	500 % Minimum	800%				
Flexibility, 0° F	Pass	Pass				
Asphalt Compatibility No failure in adhesion formation of Pass an oily exudate at the interface between the sealant and the block						
Safe Heating Temperatur		390 °F				
Recommended Pouring T		370° F				
Unit Weight @ 60° F	9.3 Lbs. per Gallon	9.3 Lbs. per Gallon				

As indicated by the foregoing test results, Koch Product #9005-HV, a high-quality hot-applied joint sealant, complies and exceeds the Specification Requirements of Crasco Pavement Joint Adhesive. Koch #9005-HV also meets the Specification Requirements of ASTM D 3405, ASHTO M-173 and Federal Specification SS-S-1401C.

Very truly yours.

David Bealer

Quality Control Manager

Bealer